Niel Shell
Topological Fields and Near Valuations (eBook, ePUB)
243,95 €
243,95 €
inkl. MwSt.
Sofort per Download lieferbar
122 °P sammeln
243,95 €
Als Download kaufen
243,95 €
inkl. MwSt.
Sofort per Download lieferbar
122 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
243,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
122 °P sammeln
Niel Shell
Topological Fields and Near Valuations (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Part I (eleven chapters) of this text for graduate students provides a Survey of topological fields, while Part II (five chapters) provides a relatively more idiosyncratic account of valuation theory.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
Santosh KumarRecent Developments in Mathematical Programming (eBook, ePUB)122,95 €
G. H KirovApproximation with Quasi-Splines (eBook, ePUB)51,95 €
Neural Network Perspectives on Cognition and Adaptive Robotics (eBook, ePUB)55,95 €
Mathematical Programming with Data Perturbations (eBook, ePUB)282,95 €
Santanu Saha RayWavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations (eBook, ePUB)156,95 €
Numerical Solution of Markov Chains (eBook, ePUB)389,95 €
Approximation Theory (eBook, ePUB)214,95 €-
-
-
Part I (eleven chapters) of this text for graduate students provides a Survey of topological fields, while Part II (five chapters) provides a relatively more idiosyncratic account of valuation theory.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 248
- Erscheinungstermin: 23. Juni 2021
- Englisch
- ISBN-13: 9781000447521
- Artikelnr.: 61915154
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 248
- Erscheinungstermin: 23. Juni 2021
- Englisch
- ISBN-13: 9781000447521
- Artikelnr.: 61915154
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Niel Shell (City University of New York)
PART I: SURVEY OF TOPOLOGICAL FIELDS 1 INTRODUCTION 1.1 Neighborhood Bases
at Zero 1.2 Alternate Axiomatizations 1.3 Basic Properties 2 VALUATIONS AND
OTHER EXAMPLES 2.1 Prevaluations 2.2 Examples of Valued Fields 3 THE
LATTICE OF RING TOPOLOGIES 3.1 Lattices of Topologies . . . 3.2 Weakening
Ring Topologies 3.3 Minimal Topologies 3.4 Independence 4 LOCALLY BOUNDED
FIELDS 4.1 Bounded Sets 4.2 Locally Bounded Rings 4.3 Preorders 4.4
Preorders and Topologies 4.5 Lattice Results 5 NORMED FIELDS 5.1 Norms 5.2
Nilpotence and Normability 6 COMPLETENESS 6.1 Completions of Rings 6.2
Completions of Fields 7 EMBEDDING AND EXTENSION 7.1 The Problem 7.2 The
Product Topology Extension 8 EXISTENCE OF FIELD TOPOLOGIES 9 CONNECTED
FIELDS 10 DISCONNECTED FIELDS 10.1 Extremally Disconnected Fields 10.2
Ultraregular Fields . 11 LINEAR FIELDS PART 11: VALUED FIELDS 12 ABSOLUTE
VALUES 12.1 Nonarchimedean Absolute Values 12.2 Absolute Values on PID's
12.3 Equivalent Absolute Values 12.4 Equivalent Valuations 12.5 Powers of
Absolute Values 13 PLACES 14 VECTOR SPACES AND STRICTLY MINIMAL FIELDS
.14.1 Strictly Minimal Fields .14.2 Completeness and Norms 14.3 Normed
Algebras 15 EXTENSIONS OF VALUATIONS 15.1 Existence of Extensions 15.2
Archimedean Absolute Values 15.3 Complete and Algebraically Closed Fields .
16 CHARACTERIZATIONS 16.1 Topologies Induced by Absolute Values 16.2
Archimedean Valuations 16.3 Type V Fields 16.4 Addiator Sequences 16.5
Topologies Induced by Valuations
at Zero 1.2 Alternate Axiomatizations 1.3 Basic Properties 2 VALUATIONS AND
OTHER EXAMPLES 2.1 Prevaluations 2.2 Examples of Valued Fields 3 THE
LATTICE OF RING TOPOLOGIES 3.1 Lattices of Topologies . . . 3.2 Weakening
Ring Topologies 3.3 Minimal Topologies 3.4 Independence 4 LOCALLY BOUNDED
FIELDS 4.1 Bounded Sets 4.2 Locally Bounded Rings 4.3 Preorders 4.4
Preorders and Topologies 4.5 Lattice Results 5 NORMED FIELDS 5.1 Norms 5.2
Nilpotence and Normability 6 COMPLETENESS 6.1 Completions of Rings 6.2
Completions of Fields 7 EMBEDDING AND EXTENSION 7.1 The Problem 7.2 The
Product Topology Extension 8 EXISTENCE OF FIELD TOPOLOGIES 9 CONNECTED
FIELDS 10 DISCONNECTED FIELDS 10.1 Extremally Disconnected Fields 10.2
Ultraregular Fields . 11 LINEAR FIELDS PART 11: VALUED FIELDS 12 ABSOLUTE
VALUES 12.1 Nonarchimedean Absolute Values 12.2 Absolute Values on PID's
12.3 Equivalent Absolute Values 12.4 Equivalent Valuations 12.5 Powers of
Absolute Values 13 PLACES 14 VECTOR SPACES AND STRICTLY MINIMAL FIELDS
.14.1 Strictly Minimal Fields .14.2 Completeness and Norms 14.3 Normed
Algebras 15 EXTENSIONS OF VALUATIONS 15.1 Existence of Extensions 15.2
Archimedean Absolute Values 15.3 Complete and Algebraically Closed Fields .
16 CHARACTERIZATIONS 16.1 Topologies Induced by Absolute Values 16.2
Archimedean Valuations 16.3 Type V Fields 16.4 Addiator Sequences 16.5
Topologies Induced by Valuations
PART I: SURVEY OF TOPOLOGICAL FIELDS 1 INTRODUCTION 1.1 Neighborhood Bases
at Zero 1.2 Alternate Axiomatizations 1.3 Basic Properties 2 VALUATIONS AND
OTHER EXAMPLES 2.1 Prevaluations 2.2 Examples of Valued Fields 3 THE
LATTICE OF RING TOPOLOGIES 3.1 Lattices of Topologies . . . 3.2 Weakening
Ring Topologies 3.3 Minimal Topologies 3.4 Independence 4 LOCALLY BOUNDED
FIELDS 4.1 Bounded Sets 4.2 Locally Bounded Rings 4.3 Preorders 4.4
Preorders and Topologies 4.5 Lattice Results 5 NORMED FIELDS 5.1 Norms 5.2
Nilpotence and Normability 6 COMPLETENESS 6.1 Completions of Rings 6.2
Completions of Fields 7 EMBEDDING AND EXTENSION 7.1 The Problem 7.2 The
Product Topology Extension 8 EXISTENCE OF FIELD TOPOLOGIES 9 CONNECTED
FIELDS 10 DISCONNECTED FIELDS 10.1 Extremally Disconnected Fields 10.2
Ultraregular Fields . 11 LINEAR FIELDS PART 11: VALUED FIELDS 12 ABSOLUTE
VALUES 12.1 Nonarchimedean Absolute Values 12.2 Absolute Values on PID's
12.3 Equivalent Absolute Values 12.4 Equivalent Valuations 12.5 Powers of
Absolute Values 13 PLACES 14 VECTOR SPACES AND STRICTLY MINIMAL FIELDS
.14.1 Strictly Minimal Fields .14.2 Completeness and Norms 14.3 Normed
Algebras 15 EXTENSIONS OF VALUATIONS 15.1 Existence of Extensions 15.2
Archimedean Absolute Values 15.3 Complete and Algebraically Closed Fields .
16 CHARACTERIZATIONS 16.1 Topologies Induced by Absolute Values 16.2
Archimedean Valuations 16.3 Type V Fields 16.4 Addiator Sequences 16.5
Topologies Induced by Valuations
at Zero 1.2 Alternate Axiomatizations 1.3 Basic Properties 2 VALUATIONS AND
OTHER EXAMPLES 2.1 Prevaluations 2.2 Examples of Valued Fields 3 THE
LATTICE OF RING TOPOLOGIES 3.1 Lattices of Topologies . . . 3.2 Weakening
Ring Topologies 3.3 Minimal Topologies 3.4 Independence 4 LOCALLY BOUNDED
FIELDS 4.1 Bounded Sets 4.2 Locally Bounded Rings 4.3 Preorders 4.4
Preorders and Topologies 4.5 Lattice Results 5 NORMED FIELDS 5.1 Norms 5.2
Nilpotence and Normability 6 COMPLETENESS 6.1 Completions of Rings 6.2
Completions of Fields 7 EMBEDDING AND EXTENSION 7.1 The Problem 7.2 The
Product Topology Extension 8 EXISTENCE OF FIELD TOPOLOGIES 9 CONNECTED
FIELDS 10 DISCONNECTED FIELDS 10.1 Extremally Disconnected Fields 10.2
Ultraregular Fields . 11 LINEAR FIELDS PART 11: VALUED FIELDS 12 ABSOLUTE
VALUES 12.1 Nonarchimedean Absolute Values 12.2 Absolute Values on PID's
12.3 Equivalent Absolute Values 12.4 Equivalent Valuations 12.5 Powers of
Absolute Values 13 PLACES 14 VECTOR SPACES AND STRICTLY MINIMAL FIELDS
.14.1 Strictly Minimal Fields .14.2 Completeness and Norms 14.3 Normed
Algebras 15 EXTENSIONS OF VALUATIONS 15.1 Existence of Extensions 15.2
Archimedean Absolute Values 15.3 Complete and Algebraically Closed Fields .
16 CHARACTERIZATIONS 16.1 Topologies Induced by Absolute Values 16.2
Archimedean Valuations 16.3 Type V Fields 16.4 Addiator Sequences 16.5
Topologies Induced by Valuations







