121,95 €
121,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
61 °P sammeln
121,95 €
121,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
61 °P sammeln
Als Download kaufen
121,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
61 °P sammeln
Jetzt verschenken
121,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
61 °P sammeln
  • Format: PDF

This book is the third of 15 related monographs, presents systematically a theory of self-cubic nonlinear systems. Here, at least one vector field is self-cubic, the other vector fields can be constant, self-linear, self-quadratic, and self-cubic. For constant vector fields in this book, the dynamical systems possess 1-dimensional flows, such as source, sink and saddle flows, plus third-order source and sink flows. For self-linear and self-cubic systems, the dynamical systems possess source, sink, and saddle equilibriums, saddle-source and saddle-sink equilibriums, third-order source and sink…mehr

Produktbeschreibung
This book is the third of 15 related monographs, presents systematically a theory of self-cubic nonlinear systems. Here, at least one vector field is self-cubic, the other vector fields can be constant, self-linear, self-quadratic, and self-cubic. For constant vector fields in this book, the dynamical systems possess 1-dimensional flows, such as source, sink and saddle flows, plus third-order source and sink flows. For self-linear and self-cubic systems, the dynamical systems possess source, sink, and saddle equilibriums, saddle-source and saddle-sink equilibriums, third-order source and sink (i.e., ( 3rdSO:SO)-source, ( 3rdSI:SI)-sink) and third-order saddle (i.e., (3rdSO:SI)-saddle, 3rdSI:SO)-saddle). For self-quadratic and self-cubic systems, in addition to the first and third-order source, sink, saddles plus saddle-source, saddle-sink, there are (3,2)-saddle-sink, (3,2)-saddle-source and double-saddles, and for the two self-cubic systems, double third-order source, sink and saddles exist. Finally, the authors describes thar the homoclinic orbits without cen-ters can be formed, and the corresponding homoclinic networks of source, sink and saddles exist.

• Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems; • Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-saddles; • Develops homoclinic networks of source, sink and saddles.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers.