Uncertainty Quantification for Hyperbolic and Kinetic Equations (eBook, PDF)
Redaktion: Jin, Shi; Pareschi, Lorenzo
88,95 €
88,95 €
inkl. MwSt.
Sofort per Download lieferbar
44 °P sammeln
88,95 €
Als Download kaufen
88,95 €
inkl. MwSt.
Sofort per Download lieferbar
44 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
88,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
44 °P sammeln
Uncertainty Quantification for Hyperbolic and Kinetic Equations (eBook, PDF)
Redaktion: Jin, Shi; Pareschi, Lorenzo
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The first-ever book on kinetic equations
Presents several different approaches by top authors in the field
Offers an up-to-date survey of current applications, including examples in the social sciences
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 8.67MB
Andere Kunden interessierten sich auch für
Raluca EftimieHyperbolic and Kinetic Models for Self-organised Biological Aggregations (eBook, PDF)40,95 €
Uncertainty Quantification in Computational Fluid Dynamics (eBook, PDF)72,95 €
Theory, Numerics and Applications of Hyperbolic Problems II (eBook, PDF)175,95 €
Theory, Numerics and Applications of Hyperbolic Problems I (eBook, PDF)175,95 €
Joachim GwinnerAdvanced Boundary Element Methods (eBook, PDF)72,95 €
Marc Alexander SchweitzerA Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations (eBook, PDF)40,95 €
Jesús Martínez-FrutosOptimal Control of PDEs under Uncertainty (eBook, PDF)40,95 €-
-
-
The first-ever book on kinetic equations
Presents several different approaches by top authors in the field
Offers an up-to-date survey of current applications, including examples in the social sciences
Presents several different approaches by top authors in the field
Offers an up-to-date survey of current applications, including examples in the social sciences
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 277
- Erscheinungstermin: 20. März 2018
- Englisch
- ISBN-13: 9783319671109
- Artikelnr.: 53064530
- Verlag: Springer International Publishing
- Seitenzahl: 277
- Erscheinungstermin: 20. März 2018
- Englisch
- ISBN-13: 9783319671109
- Artikelnr.: 53064530
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
¿Shi Jin is a Vilas Distinguished Achievement Professor of Mathematics at the University of Wisconsin-Madison. He earned his B.S. from Peking University and his Ph.D. from the University of Arizona. His research fields include computational fluid dynamics, kinetic equations, hyperbolic conservation laws, high frequency waves, quantum dynamics, and uncertainty quantification - fields in which he has published over 140 papers. He has been honored with the Feng Kang Prize in Scientific Computing and the Morningside Silver Medal of Mathematics at the Fourth International Congress of Chinese Mathematicians, and is a Fellow of both the American Mathematical Society and the Society for Industrial and Applied Mathematics (SIAM). Lorenzo Pareschi is a Full Professor of Numerical Analysis at the Department of Mathematics and Computer Science, University of Ferrara, Italy. He received his Ph.D. in Mathematics from the University of Bologna, Italy and subsequently held visiting professor appointments at the University of Wisconsin-Madison, the University of Orleans and University of Toulouse, France, and the Imperial College, London, UK. His research interests include multiscale modeling and numerical methods for phenomena described by time dependent nonlinear partial differential equations, in particular by means of hyperbolic balance laws and kinetic equations. He is the author/editor of nine books and more than 110 papers in peer-reviewed journals.
1 The Stochastic Finite Volume Method.- 2 Uncertainty Modeling and Propagation in Linear Kinetic Equations.- 3 Numerical Methods for High-Dimensional Kinetic Equations.- 4 From Uncertainty Propagation in Transport Equations to Kinetic Polynomials.- 5 Uncertainty Quantification for Kinetic Models in Socio-Economic and Life Sciences.- 6 Uncertainty Quantification for Kinetic Equations.- 7 Monte-Carlo Finite-Volume Methods in Uncertainty Quantification for Hyperbolic Conservation Laws.
1 The Stochastic Finite Volume Method.- 2 Uncertainty Modeling and Propagation in Linear Kinetic Equations.- 3 Numerical Methods for High-Dimensional Kinetic Equations.- 4 From Uncertainty Propagation in Transport Equations to Kinetic Polynomials.- 5 Uncertainty Quantification for Kinetic Models in Socio-Economic and Life Sciences.- 6 Uncertainty Quantification for Kinetic Equations.- 7 Monte-Carlo Finite-Volume Methods in Uncertainty Quantification for Hyperbolic Conservation Laws.







