FEATURES
- Demonstrates how unsupervised learning approaches can be used for dimensionality reduction
- Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts
- Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use
- Provides use cases, illustrative examples, and visualizations of each algorithm
- Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis
This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.