Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The purpose is to give a wide, tutorial-driven, presentation of the theory of wave processes occurring in layered nonlinear metamaterials (MM), gyrotropic and plasma media; to determine the regularities of electromagnetic wave propagation and formation of wave structures; to investigate the new wave structures (solitons etc.) and effects in MM, gyrotropic and plasma media with bulk, surface, resonant, moderate, strong nonlinearities; to study the effective methods of control of wave processes due to the use of inhomogeneous and non-stationary external fields. This book is aimed at graduates…mehr
The purpose is to give a wide, tutorial-driven, presentation of the theory of wave processes occurring in layered nonlinear metamaterials (MM), gyrotropic and plasma media; to determine the regularities of electromagnetic wave propagation and formation of wave structures; to investigate the new wave structures (solitons etc.) and effects in MM, gyrotropic and plasma media with bulk, surface, resonant, moderate, strong nonlinearities; to study the effective methods of control of wave processes due to the use of inhomogeneous and non-stationary external fields.
This book is aimed at graduates and postgraduates studying physical science and engineering, and can be used for training courses for specialists in meta-and nanophotonics and nanoelectronics.
Key Features
New types of modern nonlinear metamaterials, such as hyperbolics, are comprehensively described
Applications for specific developments based on hyperbolic metamaterials are provided
Important scientific and practical results are described for active systems using graphene-based structures
The significant impact of higher-order nonlinearity upon the instability of bullets in a nonlinear metamaterial waveguide is demonstrated
The influence of metamaterials on rogue waves is presented in the kind of detail that will attract many readers
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Volodymyr Grimalsky graduated from T. Shevchenko Kiev State University (KSU), former USSR (now Taras Shevchenko National University of Kyiv, Ukraine), in 1982 with the honorous diploma on the theoretical physics. Now he is with the Autonomous University of State Morelos, Cuernavaca, Mexico. Grimalsky is the author of more than 200 papers in refereed journals, conference proceedings, and book chapters. His scientific interests are with the linear and nonlinear propagation and interaction of electromagnetic and acoustic waves in complex media including metamaterials; physical fundamentals of semiconductor devices of high frequencies including terahertz range; and investigation of the physical fundamentals of electromagnetic and acoustic processes in ionosphere connected with seismic and volcanic activity phenomena.
Yuriy Rapoport was graduated from Taras Shevchenko National University of Kyiv, Ukraine and is now Leading research fellow at the same University, Faculty of Physics, and also with the University of Warmia and Mazury, Olsztyn, Poland. He is Ph. D. (1986) and Dr. of Phys. Math. Science (2017). He has been leader and executor of more than 10 Ukrainian and international scientific projects. He has around 140 scientific publications including 122 publications with 1031 citations in SCOPUS data base. He has presented and was co-author of the set of invited papers on the international conferences and was a co-author of a set of invited papers and monograph chapters. His scientific interests include nonlinear wave processes in the active layered and inhomogeneous media of different physical nature: metamaterials, plasma-like structures, ferromagnetics; nonlinear processes in active hyperbolic and quantum graphene metamaterials, including Graphene Metamaterial Electron Optics; ultra-high quality nonlinear resonances and vortex formation in active nonlinear metamaterials and metasurfaces in THz and optical ranges; vortex-based wireless communications, with increased information capacity and robustness respectively to environment influence; mechanisms of the synergetic coupling in the system Earth-Atmosphere-Ionosphere-Magnetosphere.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826