120,95 €
120,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
60 °P sammeln
120,95 €
120,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
60 °P sammeln
Als Download kaufen
120,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
60 °P sammeln
Jetzt verschenken
120,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
60 °P sammeln
  • Format: PDF

One of the most preeminent ways of applying mathematics in real-world scenario modeling involves graph theory. A graph can be undirected or directed depending on whether the pairwise relationships among objects are symmetric or not. Nevertheless, in many real-world situations, representing a set of complex relational objects as directed or undirected is not su¢ cient. Weighted graphs o§er a framework that helps to over come certain conceptual limitations. We show using the concept of an isomorphism that weighted graphs have a natural connection to fuzzy graphs. As we show in the book, this…mehr

Produktbeschreibung
One of the most preeminent ways of applying mathematics in real-world scenario modeling involves graph theory. A graph can be undirected or directed depending on whether the pairwise relationships among objects are symmetric or not. Nevertheless, in many real-world situations, representing a set of complex relational objects as directed or undirected is not su¢ cient. Weighted graphs o§er a framework that helps to over come certain conceptual limitations. We show using the concept of an isomorphism that weighted graphs have a natural connection to fuzzy graphs. As we show in the book, this allows results to be carried back and forth between weighted graphs and fuzzy graphs. This idea is in keeping with the important paper by Klement and Mesiar that shows that many families of fuzzy sets are lattice isomorphic to each other. We also outline the important work of Head and Weinberger that show how results from ordinary mathematics can be carried over to fuzzy mathematics. We focus on the concepts connectivity, degree sequences and saturation, and intervals and gates in weighted graphs.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. John N. Mordeson is Professor Emeritus of Mathematics at Creighton University. He received his B.S., M.S., and Ph.D. from Iowa State University. He is a Member of Phi Kappa Phi. He is the President of the Society for Mathematics of Uncertainty. He has published 15 books and 200 journal articles. He is on the editorial board of numerous journals. He has served as an external examiner of Ph.D. candidates from India, South Africa, Bulgaria, and Pakistan. He has refereed for numerous journals and granting agencies. He is particularly interested in applying mathematics of uncertainty to combat the problem of human trafficking. Dr. Sunil Mathew is currently a Faculty Member in the Department of Mathematics, NIT Calicut, India. He has acquired his masters from St. Joseph's College Devagiri, Calicut, and Ph.D. from National Institute of Technology Calicut in the area of Fuzzy Graph Theory. He has published more than 75 research papers and written two books. He is a member of several academic bodies and associations. He is editor and reviewer of several international journals. He has an experience of 20 years in teaching and research. His current research topics include fuzzy graph theory, bio-computational modeling, graph theory, fractal geometry, and chaos.