Wireless Computing in Medicine (eBook, PDF)
From Nano to Cloud with Ethical and Legal Implications
Redaktion: Eshaghian-Wilner, Mary
Alle Infos zum eBook verschenken
Wireless Computing in Medicine (eBook, PDF)
From Nano to Cloud with Ethical and Legal Implications
Redaktion: Eshaghian-Wilner, Mary
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Hier können Sie sich einloggen

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Provides a comprehensive overview of wireless computing in medicine, with technological, medical, and legal advances This book brings together the latest work of leading scientists in the disciplines of Computing, Medicine, and Law, in the field of Wireless Health. The book is organized into three main sections. The first section discusses the use of distributed computing in medicine. It concentrates on methods for treating chronic diseases and cognitive disabilities like Alzheimer's, Autism, etc. It also discusses how to improve portability and accuracy of monitoring instruments and reduce…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 13.51MB
Biosensors and Nanotechnology (eBook, PDF)162,99 €
Raghbir Singh KhandpurCompendium of Biomedical Instrumentation (eBook, PDF)164,99 €
Paras N. PrasadIntroduction to Nanomedicine and Nanobioengineering (eBook, PDF)131,99 €
Nanomedicine and Tissue Engineering (eBook, PDF)151,95 €
Nanodiamonds (eBook, PDF)112,95 €
Robert S. H. Istepanianm-Health (eBook, PDF)109,99 €
Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles (eBook, PDF)160,95 €-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 664
- Erscheinungstermin: 10. Juni 2016
- Englisch
- ISBN-13: 9781118993606
- Artikelnr.: 45257953
- Verlag: John Wiley & Sons
- Seitenzahl: 664
- Erscheinungstermin: 10. Juni 2016
- Englisch
- ISBN-13: 9781118993606
- Artikelnr.: 45257953
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Mary Mehrnoosh Eshaghian-Wilner
Arushi Gupta
Alekhya Sai Nuduru Pati
Kodiak Ravicz
and Pujal Trivedi 1.1 Introduction
3 1.2 Definition of Terms
5 1.3 Brief History of Wireless Healthcare
5 1.4 What is Wireless Computing? 6 1.5 Distributed Computing
7 1.6 Nanotechnology in Medicine
10 1.7 Ethics of Medical Wireless Computing
12 1.8 Privacy in Wireless Computing
13 1.9 Conclusion
14 References
14 2 Nanocomputing and Cloud Computing 17 T. Soren Craig
Mary Mehrnoosh Eshaghian-Wilner
Nikila Goli
Arushi Gupta
Shiva Navab
Alekhya Sai Nuduru Pati
Kodiak Ravicz
Gaurav Sarkar
and Ben Shiroma 2.1 Introduction
17 2.2 Nanocomputing
18 2.3 Cloud Computing
30 2.4 Conclusion
37 Acknowledgment
37 References
37 PART II PERVASIVE WIRELESS COMPUTING IN MEDICINE 41 3 Pervasive Computing in Hospitals 43 Janet Meiling Wang-Roveda
Linda Powers
and Kui Ren 3.1 Introduction
43 3.2 Architecture of Pervasive Computing in Hospitals
45 3.3 Sensors
Devices
Instruments
and Embedded Systems
49 3.4 Data Acquisition in Pervasive Computing
59 3.5 Software Support for Context-Aware and Activity Sharing Services
63 3.6 Data and Information Security
66 3.7 Conclusion
71 Acknowledgment
71 References
72 4 Diagnostic Improvements: Treatment and Care 79 Xiaojun Xian 4.1 Introduction
79 4.2 System Design
81 4.3 Body Sensor Network
82 4.4 Portable Sensors
84 4.5 Wearable Sensors
88 4.6 Implantable Sensors
94 4.7 Wireless Communication
95 4.8 Mobile Base Unit
97 4.9 Conclusion and Challenges
98 Acknowledgment
99 References
99 5 Collaborative Opportunistic Sensing of Human Behavior with Mobile Phones 107 Luis A. Castro
Jessica Beltran-Marquez
Jesus Favela
Edgar Chavez
Moises Perez
Marcela Rodriguez
Rene Navarro
and Eduardo Quintana 5.1 Health and Mobile Sensing
107 5.2 The InCense Sensing Toolkit
110 5.3 Sensing Campaign 1: Detecting Behaviors Associated with the Frailty Syndrome Among Older Adults
119 5.4 Sensing Campaign 2: Detecting Problematic Behaviors among Elders with Dementia
123 5.5 Discussion
131 5.6 Conclusions and Future Work
132 References
133 6 Pervasive Computing to Support Individuals with Cognitive Disabilities 137 Monica Tentori
José Mercado
Franceli L. Cibrian
and Lizbeth Escobedo 6.1 Introduction
137 6.2 Wearable and Mobile Sensing Platforms to Ease the Recording of Data Relevant to Clinical Case Assessment
144 6.3 Augmented Reality and Mobile and Tangible Computing to Support Cognition
151 6.4 Serious Games and Exergames to Support Motor Impairments
158 6.5 Conclusions
168 Acknowledgments
172 References
172 7 Wireless Power for Implantable Devices: A Technical Review 187 Nikita Ahuja
Mary Mehrnoosh Eshaghian-Wilner
Zhuochen Ge
Renjun Liu
Alekhya Sai Nuduru Pati
Kodiak Ravicz
Mike Schlesinger
Shu Han Wu
and Kai Xie 7.1 Introduction
187 7.2 History of Wireless Power
189 7.3 Approach of Wireless Power Transmission
191 7.4 A Detailed Example of Magnetic Coupling Resonance
194 7.5 Popular Standards
199 7.6 Wireless Power Transmission in Medical use
201 7.7 Conclusion
204 Acknowledgments
205 References
205 8 Energy-Efficient Physical Activity Detection in Wireless Body Area Networks 211 Daphney-Stavroula Zois
Sangwon Lee
Murali Annavaram
and Urbashi Mitra 8.1 Introduction
211 8.2 Knowme Platform
215 8.3 Energy Impact of Design Choices
217 8.4 Problem Formulation
228 8.5 Sensor Selection Strategies
232 8.6 Alternative Problem Formulation
237 8.7 Sensor Selection Strategies for the Alternative Formulation
241 8.8 Experiments
244 8.9 Related Work
254 8.10 Conclusion
256 Acknowledgments
257 References
257 9 Markov Decision Process for Adaptive Control of Distributed Body Sensor Networks 263 Shuping Liu
Anand Panangadan
Ashit Talukder
and Cauligi S. Raghavendra 9.1 Introduction
263 9.2 Rationale for MDP Formulation
265 9.3 Related Work
268 9.4 Problem Statement
Assumptions
and Approach
269 9.5 MDP Model for Multiple Sensor Nodes
272 9.6 Communication
274 9.7 Simulation Results
276 9.8 Conclusions
292 Acknowledgment
294 References
294 PART III NANOSCALE WIRELESS COMPUTING IN MEDICINE 297 10 An Introduction to Nanomedicine 299 Amber Bhargava
Janet Cheung
Mary Mehrnoosh Eshaghian-Wilner
Wan Lee
Kodiak Ravicz
Mike Schlesinger
Yesha Shah
and Abhishek Uppal 10.1 Introduction
299 10.2 Nanomedical Technology
301 10.3 Detection
303 10.4 Treatment
305 10.5 Biocompatibility
309 10.6 Power
311 10.7 Computer Modeling
313 10.8 Research Institutions
315 10.9 Conclusion
317 Acknowledgments
317 References
317 11 Nanomedicine Using Magneto-Electric Nanoparticles 323 Mary Mehrnoosh Eshaghian-Wilner
Andrew Prajogi
Kodiak Ravicz
Gaurav Sarkar
Umang Sharma
Rakesh Guduru
and Sakhrat Khizroev 11.1 Introduction
323 11.2 Overview of MENs
324 11.3 Experiment 1: Externally Controlled On-Demand Release of Anti-HIV Drug Azttp Using Mens as Carriers
325 11.4 Experiment 2: Mens to Enable Field-Controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells
331 11.5 Experiment 3: Magnetoelectric "Spin" on Stimulating the Brain
339 11.6 Bioceramics: Bone Regeneration and MNS
348 11.7 Conclusion
351 References
353 12 DNA Computation in Medicine 359 Noam Mamet and Ido Bachelet 12.1 Background for the Non-Biologist
359 12.2 Introduction
362 12.3 In Vitro Computing
364 12.4 Computation in Vivo
370 12.5 Challenges
373 12.6 Glimpse into the Future
373 References
374 13 Graphene-Based Nanosystems for the Detection of Proteinic Biomarkers of Disease: Implication in Translational Medicine 377 Farid Menaa
Sandeep Kumar Vashist
Adnane Abdelghani
and Bouzid Menaa 13.1 Introduction
377 13.2 Structural and Physicochemical Properties of Graphene and Main Derivatives
379 13.3 Graphene and Derivatives-Based Biosensing Nanosystems and Applications
382 13.4 Conclusion and Perspectives
389 Conflict of Interest
390 Abbreviations
390 References
391 14 Modeling Brain Disorders in Silicon Nanotechnologies 401 Alice C. Parker
Saeid Barzegarjalali
Kun Yue
Rebecca Lee
and Sukanya Patil 14.1 Introduction
401 14.2 The BioRC Project
402 14.3 Background: BioRC Neural Circuits
404 14.4 Modeling Synapses with CNT Transistors
408 14.5 Modeling OCD with Hybrid CMOS/Nano Circuits
410 14.6 The Biological Cortical Neuron and Hybrid Electronic Cortical Neuron
411 14.7 Biological OCD Circuit and Biomimetic Model
412 14.8 Indirect Pathway: The Braking Mechanism
413 14.9 Direct Pathway: The Accelerator
414 14.10 Typical and Atypical Responses
415 14.11 Modeling Schizophrenic Hallucinations with Hybrid CMOS/Nano Circuits
416 14.12 Explanation for Schizophrenia Symptoms
416 14.13 Disinhibition due to Miswiring
418 14.14 Our Hybrid Neuromorphic Prediction Network
418 14.15 Simulation Results
419 14.16 Numerical Analysis of False Firing
421 14.17 Modeling PD with CMOS Circuits
422 14.18 Modeling MS with CMOS Circuits
424 14.19 Demyelination Circuit
425 14.20 Conclusions and Future Trends
426 References
428 15 Linking Medical Nanorobots to Pervasive Computing 431 Sylvain Martel 15.1 Introduction
431 15.2 Complementary Functionalities
432 15.3 Main Specifications for such Nanorobotic Agents (Nanorobots)
433 15.4 Medical Nanorobotic Agents-An Example
436 15.5 Nanorobotic Communication Links Allowing Pervasive Computing
438 15.6 Types of Information
439 15.7 Medical Nanorobotic Agents for Monitoring and Early Detection
440 15.8 Medical Nanorobotics and Pervasive Computing-Main Conditions that must be met for its Feasibility
442 15.9 Conclusion
443 References
444 16 Nanomedicine's Transversality: Some Implications of the Nanomedical Paradigm 447 José J. López and Mathieu Noury 16.1 Introduction
447 16.2 Nanomedicine's Promises
448 16.3 Analysing Implications of the Nanomedicine Paradigm
451 16.4 The Molecular Underpinnings of Nanomedicine's Transversality
456 16.5 Nanomedicine as Predictive Medicine
457 16.6 Nanomedicine as Personalized Medicine
460 16.7 Nanomedicine as Regenerative Medicine
465 16.8 Conclusion
466 References
468 PART IV ETHICAL AND LEGAL ASPECTS OF WIRELESS COMPUTING IN MEDICINE 473 17 Ethical Challenges of Ubiquitous Health Care 475 William Sims Bainbridge 17.1 Introduction
475 17.2 A Philosophical Framework
478 17.3 Information Deviance
480 17.4 The Current Frenzy
482 17.5 Genetic Informatics
485 17.6 Ubiquitous Information Technology
489 17.7 Stasis versus Progress
492 17.8 Problematic Ethics
494 17.9 Leadership in Science and Engineering Ethics
496 17.10 Conclusion
498 References
499 18 The Ethics of Ubiquitous Computing in Health Care 507 Clark A. Miller
Heather M. Ross
Gaymon Bennett
and J. Benjamin Hurlbut 18.1 Introduction
507 18.2 Ubiquitous Computing and the Transformation of Health Care: Three Visions
511 18.3 Case Study: Cardiac Implanted Electrical Devices
516 18.4 Ethical Reflections
521 18.5 Conclusions: The Need for Socio-Technical Design
534 References
537 19 Privacy Protection of Electronic Healthcare Records in e-Healthcare Systems 541 Fredrick Japhet Mtenzi 19.1 Introduction
541 19.2 Security and Privacy Concerns of EHR in e-Healthcare Systems
545 19.3 Privacy Laws and Regulations of EHRs
547 19.4 Privacy of EHRs in e-Healthcare Systems
552 19.5 Discussion and Conclusion
558 19.6 Contributions and Future Research
559 References
561 20 Ethical
Privacy
and Intellectual Property Issues in Nanomedicine 567 Katie Atalla
Ayush Chaudhary
Mary Mehrnoosh Eshaghian-Wilner
Arushi Gupta
Raj Mehta
Adarsh Nayak
Andrew Prajogi
Kodiak Ravicz
Ben Shiroma
and Pujal Trivedi 20.1 Introduction
567 20.2 Ethical Issues
568 20.3 Privacy Issues
579 20.4 IP Issues
590 20.5 Conclusion
596 Acknowledgments
596 References
596 PART V CONCLUSION 601 21 Concluding Remarks 603 Zhaoqi Chen
Mary Mehrnoosh Eshaghian-Wilner
Kalyani Gonde
Kodiak Ravicz
Rakshith Saligram and Mike Schlesinger 21.1 Wireless Computing in Health Care
603 21.2 Nanomedicine
606 21.3 Ethical
Privacy
and Intellectual Property Issues of Nanomedicine and Wireless Computing
609 21.4 Conclusions
610 Acknowledgments
610 References
610 Index 613
Mary Mehrnoosh Eshaghian-Wilner
Arushi Gupta
Alekhya Sai Nuduru Pati
Kodiak Ravicz
and Pujal Trivedi 1.1 Introduction
3 1.2 Definition of Terms
5 1.3 Brief History of Wireless Healthcare
5 1.4 What is Wireless Computing? 6 1.5 Distributed Computing
7 1.6 Nanotechnology in Medicine
10 1.7 Ethics of Medical Wireless Computing
12 1.8 Privacy in Wireless Computing
13 1.9 Conclusion
14 References
14 2 Nanocomputing and Cloud Computing 17 T. Soren Craig
Mary Mehrnoosh Eshaghian-Wilner
Nikila Goli
Arushi Gupta
Shiva Navab
Alekhya Sai Nuduru Pati
Kodiak Ravicz
Gaurav Sarkar
and Ben Shiroma 2.1 Introduction
17 2.2 Nanocomputing
18 2.3 Cloud Computing
30 2.4 Conclusion
37 Acknowledgment
37 References
37 PART II PERVASIVE WIRELESS COMPUTING IN MEDICINE 41 3 Pervasive Computing in Hospitals 43 Janet Meiling Wang-Roveda
Linda Powers
and Kui Ren 3.1 Introduction
43 3.2 Architecture of Pervasive Computing in Hospitals
45 3.3 Sensors
Devices
Instruments
and Embedded Systems
49 3.4 Data Acquisition in Pervasive Computing
59 3.5 Software Support for Context-Aware and Activity Sharing Services
63 3.6 Data and Information Security
66 3.7 Conclusion
71 Acknowledgment
71 References
72 4 Diagnostic Improvements: Treatment and Care 79 Xiaojun Xian 4.1 Introduction
79 4.2 System Design
81 4.3 Body Sensor Network
82 4.4 Portable Sensors
84 4.5 Wearable Sensors
88 4.6 Implantable Sensors
94 4.7 Wireless Communication
95 4.8 Mobile Base Unit
97 4.9 Conclusion and Challenges
98 Acknowledgment
99 References
99 5 Collaborative Opportunistic Sensing of Human Behavior with Mobile Phones 107 Luis A. Castro
Jessica Beltran-Marquez
Jesus Favela
Edgar Chavez
Moises Perez
Marcela Rodriguez
Rene Navarro
and Eduardo Quintana 5.1 Health and Mobile Sensing
107 5.2 The InCense Sensing Toolkit
110 5.3 Sensing Campaign 1: Detecting Behaviors Associated with the Frailty Syndrome Among Older Adults
119 5.4 Sensing Campaign 2: Detecting Problematic Behaviors among Elders with Dementia
123 5.5 Discussion
131 5.6 Conclusions and Future Work
132 References
133 6 Pervasive Computing to Support Individuals with Cognitive Disabilities 137 Monica Tentori
José Mercado
Franceli L. Cibrian
and Lizbeth Escobedo 6.1 Introduction
137 6.2 Wearable and Mobile Sensing Platforms to Ease the Recording of Data Relevant to Clinical Case Assessment
144 6.3 Augmented Reality and Mobile and Tangible Computing to Support Cognition
151 6.4 Serious Games and Exergames to Support Motor Impairments
158 6.5 Conclusions
168 Acknowledgments
172 References
172 7 Wireless Power for Implantable Devices: A Technical Review 187 Nikita Ahuja
Mary Mehrnoosh Eshaghian-Wilner
Zhuochen Ge
Renjun Liu
Alekhya Sai Nuduru Pati
Kodiak Ravicz
Mike Schlesinger
Shu Han Wu
and Kai Xie 7.1 Introduction
187 7.2 History of Wireless Power
189 7.3 Approach of Wireless Power Transmission
191 7.4 A Detailed Example of Magnetic Coupling Resonance
194 7.5 Popular Standards
199 7.6 Wireless Power Transmission in Medical use
201 7.7 Conclusion
204 Acknowledgments
205 References
205 8 Energy-Efficient Physical Activity Detection in Wireless Body Area Networks 211 Daphney-Stavroula Zois
Sangwon Lee
Murali Annavaram
and Urbashi Mitra 8.1 Introduction
211 8.2 Knowme Platform
215 8.3 Energy Impact of Design Choices
217 8.4 Problem Formulation
228 8.5 Sensor Selection Strategies
232 8.6 Alternative Problem Formulation
237 8.7 Sensor Selection Strategies for the Alternative Formulation
241 8.8 Experiments
244 8.9 Related Work
254 8.10 Conclusion
256 Acknowledgments
257 References
257 9 Markov Decision Process for Adaptive Control of Distributed Body Sensor Networks 263 Shuping Liu
Anand Panangadan
Ashit Talukder
and Cauligi S. Raghavendra 9.1 Introduction
263 9.2 Rationale for MDP Formulation
265 9.3 Related Work
268 9.4 Problem Statement
Assumptions
and Approach
269 9.5 MDP Model for Multiple Sensor Nodes
272 9.6 Communication
274 9.7 Simulation Results
276 9.8 Conclusions
292 Acknowledgment
294 References
294 PART III NANOSCALE WIRELESS COMPUTING IN MEDICINE 297 10 An Introduction to Nanomedicine 299 Amber Bhargava
Janet Cheung
Mary Mehrnoosh Eshaghian-Wilner
Wan Lee
Kodiak Ravicz
Mike Schlesinger
Yesha Shah
and Abhishek Uppal 10.1 Introduction
299 10.2 Nanomedical Technology
301 10.3 Detection
303 10.4 Treatment
305 10.5 Biocompatibility
309 10.6 Power
311 10.7 Computer Modeling
313 10.8 Research Institutions
315 10.9 Conclusion
317 Acknowledgments
317 References
317 11 Nanomedicine Using Magneto-Electric Nanoparticles 323 Mary Mehrnoosh Eshaghian-Wilner
Andrew Prajogi
Kodiak Ravicz
Gaurav Sarkar
Umang Sharma
Rakesh Guduru
and Sakhrat Khizroev 11.1 Introduction
323 11.2 Overview of MENs
324 11.3 Experiment 1: Externally Controlled On-Demand Release of Anti-HIV Drug Azttp Using Mens as Carriers
325 11.4 Experiment 2: Mens to Enable Field-Controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells
331 11.5 Experiment 3: Magnetoelectric "Spin" on Stimulating the Brain
339 11.6 Bioceramics: Bone Regeneration and MNS
348 11.7 Conclusion
351 References
353 12 DNA Computation in Medicine 359 Noam Mamet and Ido Bachelet 12.1 Background for the Non-Biologist
359 12.2 Introduction
362 12.3 In Vitro Computing
364 12.4 Computation in Vivo
370 12.5 Challenges
373 12.6 Glimpse into the Future
373 References
374 13 Graphene-Based Nanosystems for the Detection of Proteinic Biomarkers of Disease: Implication in Translational Medicine 377 Farid Menaa
Sandeep Kumar Vashist
Adnane Abdelghani
and Bouzid Menaa 13.1 Introduction
377 13.2 Structural and Physicochemical Properties of Graphene and Main Derivatives
379 13.3 Graphene and Derivatives-Based Biosensing Nanosystems and Applications
382 13.4 Conclusion and Perspectives
389 Conflict of Interest
390 Abbreviations
390 References
391 14 Modeling Brain Disorders in Silicon Nanotechnologies 401 Alice C. Parker
Saeid Barzegarjalali
Kun Yue
Rebecca Lee
and Sukanya Patil 14.1 Introduction
401 14.2 The BioRC Project
402 14.3 Background: BioRC Neural Circuits
404 14.4 Modeling Synapses with CNT Transistors
408 14.5 Modeling OCD with Hybrid CMOS/Nano Circuits
410 14.6 The Biological Cortical Neuron and Hybrid Electronic Cortical Neuron
411 14.7 Biological OCD Circuit and Biomimetic Model
412 14.8 Indirect Pathway: The Braking Mechanism
413 14.9 Direct Pathway: The Accelerator
414 14.10 Typical and Atypical Responses
415 14.11 Modeling Schizophrenic Hallucinations with Hybrid CMOS/Nano Circuits
416 14.12 Explanation for Schizophrenia Symptoms
416 14.13 Disinhibition due to Miswiring
418 14.14 Our Hybrid Neuromorphic Prediction Network
418 14.15 Simulation Results
419 14.16 Numerical Analysis of False Firing
421 14.17 Modeling PD with CMOS Circuits
422 14.18 Modeling MS with CMOS Circuits
424 14.19 Demyelination Circuit
425 14.20 Conclusions and Future Trends
426 References
428 15 Linking Medical Nanorobots to Pervasive Computing 431 Sylvain Martel 15.1 Introduction
431 15.2 Complementary Functionalities
432 15.3 Main Specifications for such Nanorobotic Agents (Nanorobots)
433 15.4 Medical Nanorobotic Agents-An Example
436 15.5 Nanorobotic Communication Links Allowing Pervasive Computing
438 15.6 Types of Information
439 15.7 Medical Nanorobotic Agents for Monitoring and Early Detection
440 15.8 Medical Nanorobotics and Pervasive Computing-Main Conditions that must be met for its Feasibility
442 15.9 Conclusion
443 References
444 16 Nanomedicine's Transversality: Some Implications of the Nanomedical Paradigm 447 José J. López and Mathieu Noury 16.1 Introduction
447 16.2 Nanomedicine's Promises
448 16.3 Analysing Implications of the Nanomedicine Paradigm
451 16.4 The Molecular Underpinnings of Nanomedicine's Transversality
456 16.5 Nanomedicine as Predictive Medicine
457 16.6 Nanomedicine as Personalized Medicine
460 16.7 Nanomedicine as Regenerative Medicine
465 16.8 Conclusion
466 References
468 PART IV ETHICAL AND LEGAL ASPECTS OF WIRELESS COMPUTING IN MEDICINE 473 17 Ethical Challenges of Ubiquitous Health Care 475 William Sims Bainbridge 17.1 Introduction
475 17.2 A Philosophical Framework
478 17.3 Information Deviance
480 17.4 The Current Frenzy
482 17.5 Genetic Informatics
485 17.6 Ubiquitous Information Technology
489 17.7 Stasis versus Progress
492 17.8 Problematic Ethics
494 17.9 Leadership in Science and Engineering Ethics
496 17.10 Conclusion
498 References
499 18 The Ethics of Ubiquitous Computing in Health Care 507 Clark A. Miller
Heather M. Ross
Gaymon Bennett
and J. Benjamin Hurlbut 18.1 Introduction
507 18.2 Ubiquitous Computing and the Transformation of Health Care: Three Visions
511 18.3 Case Study: Cardiac Implanted Electrical Devices
516 18.4 Ethical Reflections
521 18.5 Conclusions: The Need for Socio-Technical Design
534 References
537 19 Privacy Protection of Electronic Healthcare Records in e-Healthcare Systems 541 Fredrick Japhet Mtenzi 19.1 Introduction
541 19.2 Security and Privacy Concerns of EHR in e-Healthcare Systems
545 19.3 Privacy Laws and Regulations of EHRs
547 19.4 Privacy of EHRs in e-Healthcare Systems
552 19.5 Discussion and Conclusion
558 19.6 Contributions and Future Research
559 References
561 20 Ethical
Privacy
and Intellectual Property Issues in Nanomedicine 567 Katie Atalla
Ayush Chaudhary
Mary Mehrnoosh Eshaghian-Wilner
Arushi Gupta
Raj Mehta
Adarsh Nayak
Andrew Prajogi
Kodiak Ravicz
Ben Shiroma
and Pujal Trivedi 20.1 Introduction
567 20.2 Ethical Issues
568 20.3 Privacy Issues
579 20.4 IP Issues
590 20.5 Conclusion
596 Acknowledgments
596 References
596 PART V CONCLUSION 601 21 Concluding Remarks 603 Zhaoqi Chen
Mary Mehrnoosh Eshaghian-Wilner
Kalyani Gonde
Kodiak Ravicz
Rakshith Saligram and Mike Schlesinger 21.1 Wireless Computing in Health Care
603 21.2 Nanomedicine
606 21.3 Ethical
Privacy
and Intellectual Property Issues of Nanomedicine and Wireless Computing
609 21.4 Conclusions
610 Acknowledgments
610 References
610 Index 613







